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1. Introduction

Dynamics are mathematically and conceptually much more complicated than 
(comparative) statics: Algebraic equations are substituted with differential equations. 
These equations are difficult to work with in the sense that one cannot – as in a static 
framework – find graphical solutions to them without computer-implemented solution 
algorithms. 

Furthermore, it is difficult to gain insights about the properties of a system by inspecting 
its differential equations. It will hopefully be demonstrated that the method of representing 
the system graphically through block diagrams lends itself easier to such insights. 
Representing a system this way may be considered an interface between the user and the 
differential equation based model. This paper – among other things – tries to convey the 
usefulness of the (graphic) block diagram approach.

The structure of the paper is as follows: We start in section 2 with choosing the simplest 
possible dynamic model: an economic unit with the approximate dynamics of a vessel with 
money flowing through it. This is in the “hydraulic Keynesian” tradition of A.W Phillips 
(1954,1957). Vessel dynamics is compared to an alternative of “pipeline dynamics”, and 
argued to be superior.

Some basic control systems concepts and tools for continuous-time modeling are 
introduced in subsection 2.1. This subsection may be skipped or fast browsed by readers 
with this type of background.

We then argue in subsection 2.2 that the “vessel dynamics” model is not only useful in the 
sense that it is the simplest one that gives meaningful behaviour (an “Occam’s razor” 
choice which was Phillips’ reason), but that it may be additionally justified when one 
considers that a sector is the aggregate of a large number of individual units. A theorem 
about this is presented and proved.

In section 3 two basic “textbook” macro models are presented and discussed using the 
earlier introduced concepts and tools.

Section 4 argues for a fairly dramatic claim, a claim that may be the more controversial 
since the argument given is quite simple. The claim is that the IS/LM model is 
fundamentally inconsistent and therefore should be discarded.
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2. A money stock/flow model for a generic economic unit.

An economic unit in our terms may be a household, a firm, a bank, a government. The 
generic economic unit concept is shown in figure 1:

Figure 1 

The unit may be compared to a “vessel” or “reservoir” with varying volume of “fluid”. 
Money flows Fi (in) and Fo (out) are shown as black arrows. While money in the real world 
moves between units in discrete “packets”, we will consider money flows to be continuous. 
This is reasonable for the time scale (weeks, months, years) of the dynamics that is to be 
considered. Real flows (labour, goods, services) are suggested by the thick shaded arrows 
in the figure. The grey shaded area surrounding the unit is simply the aggregate of all other 
units, i.e. the macroeconomic system.

Money stock M for the unit is the volume in the vessel at a given instant. Its size depends 
on the unit’s precautionary, speculative and transaction motives. 

Money stock may also be interpreted as due to a neccessary decision+action time delay  
for the unit before received cash is passed on again. 

For the special case with  constant, M will also be constant. We may then 
think of the time delay in terms of a specific “particle” of money arriving at the inlet, 
appearing at the outlet  time units later. We have

, or (1)

From (1) follows that a local velocity of money is:

(2)

The delay associated with flows in general (as in process plants, pipelines, etc.), will in the 
case of money be the time a given amount spends between arrival and departure at a given 
unit. Flows between units may be reckoned as immediate. Thus money always resides at 
some unit. 

We now introduce the unit step function  and the corresponding step response k(t). 
The step function simply means that at time t = 0, an incoming flow of money with 
amplitude = 1[currency unit/time unit] begins, and the flow Fo resulting from this specific 
input, is the step response. For the unit we could conjecture that the money flow is delayed 
exactly time units, resulting in the trivial step response shown to the right in figure 2 
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(assuming that the unit starts out with zero money stock):  

Figure 2 

Such a response would have occured if the unit had been comparable to a “pipeline”, as 
suggested in the figure. The vessel analogy, however, is obviously more realistic, and its 
response is shown in figure 3. Fluid has to rise in the vessel to build up the neccessary 
“pressure” before an outflow starts. More specifically, we assume the following dynamics: 
The unit reacts to a monetary step function type flow with a time-dispersed exponential 
spending response asymptotically approaching the incoming flow level.

Figure 3 

The term  is now not a time delay, but what in systems theory lingo is called a time lag. 
Geometrically, it corresponds to the position along the time axis of the intersection between 
the tangent at t  = 0, and the horizontal asymptote. The unit react to a sudden incoming 
money flow by gradually increasing its spending, and the parameter describing the speed 
of adjustment is . When spending flow Fo (theoretically) has reached the asymptotic 
level, we have equilibrium. The money stock of our unit (the “volume of the vessel” in 
figure 1) must be the integrated difference between income- and spending flows. We then 
have the differential equation

(3)

At the same time we demand that the step response Fo (t) shall be as in figure 3:

(4)
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If we choose

, (5)

it may be shown that both (3) and (4) are satisfied. We now observe that as long as we 
confine ourselves to Fo (t), (5) corresponds to definitions (1) and (2) for respectively time 
delay and money velocity. These definitions were based on the the very unrealistic 
assumptions of constant and equal in- and outflows, and a pipeline model. These 
assumptions may now be rescinded. The absence of Fi (t) in (5) is reasonable, since the unit 
exercises control only over Fo (t). 

Equation (5) is intuitively satisfying in the sense that the outgoing flow is proportional to 
money stock, which can be regarded by physical analogy as a “pressure” driving this flow 
(pressure is proportional to fluid level in a vessel, which again is proportional to fluid 
volume when the vessel is cylindrical). The larger the time lag , the less flow Fo for a 
given M, i.e. a large time lag (lower velocity) means that money has to accumulate 
significantly at the unit before the unit increases spending. The parameter  is the first 
behavioral assumption for our generic unit. One may let  be influenced by other system 
variables, for instance let it increase sharply in a recession/depression (increased liquidity 
preference) or decrease with increasing interest rates. Such modifications will make a 
model consisting of such units nonlinear. But in this paper we confine ourselves to the 
simple assumption of constant .

2.1 The Laplace transformation and block diagrams

(This subsection may be skipped or browsed by readers familiar with control systems 
literature and concepts.) 

Finding time responses for systems of the type introduced above, requires solution of linear 
differential equations. A tool that makes this task easier, both in the stage where the 
problem is to construct and understand a model, and in the subsequent solution (or 
numerical simulation) stage, is the block diagram. We will later employ this tool 
extensively. Block diagrams are based on the Laplace transformation, which is described 
in most undergraduate mathematical textbooks. The main advantage of the Laplace 
transformation is that differential equations are substituted with algebraic equations. We 
will develop the topic through the example given by eqs. (3)-(5). Substituting (5) in (3), we 
get:

(6)

Laplace transforming both sides leads to

(7)

where s is the Laplace transformation1 free variable.  is the initial value for t = 0. 

This equation may be solved for ,
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1
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(8)

Here (9)

is the transfer function from  to , enabling us to find the response  when 
 (i.e. also ) is given.

 Consider the case in figure 3; which has initial zero money stock, , and a step 
input flow , which has the Laplace transform . Then (8) gives

(10)

which has the inverse transform

(11)

This is the step function response for the money stock. Employing (5), we get the spending 
flow step response Fo (t) already given in (4): 

(12)

The transfer function from  to  also follows from (5), giving

(13)

So far on the dynamics of a unit with initial zero money stock and a constant inflow of 
money starting at  t = 0. If we alternatively consider an unit with a certain initial money 
stock  but no income, i.e. Fi (t) = 0, then we may also find the time path of  Fo (t). From 
(8) we now get

(14)

which inverse transformed is , leading to

(15)

We conclude that our unit spends its money following a decaying exponential curve, which 
seems reasonable in a situation with zero income. See figure 4:

1. Both functions of time and Laplace transforms are written with the same symbol. The context, or
explicitly written dependence on t or s will suffice to distinguish between them. Note also that s
is here not the savings coefficient. We avoid confusion in this paper by using the propensity to
consume instead, c = 1 - s.
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Figure 4 

We may now introduce the block diagram, which embodies the same information as that 
represented through differential equations, but which is better for understanding a system. 
This is the rationale for modeling and simulation packages such as Simulink (Mathworks, 
2007) being based on block diagram description. 

Consider figure 5:

Figure 5 

The rules for drawing and interpreting this diagram are as follows:

1. The variable exiting a rectangular block is the product of the variable entering the block 
and the expression within the block. Thus we have (5): . 

2. The small dot to the right signifies a branching point. This means that the variable  is 
both an output of the system, and also fed back to the system’s input side. In this case we 
have a negative feedback.

3. The circle to the left is a summation point. The arrow leaving the circle is the sum of 
arrows entering the circle. An arrowhead with a minus sign associated with it, means that 
the variable corresponding to this arrow is to be subtracted in the summation. Thus we 
have (4); .

4. A block of the type  signifies (in accordance with rule 1) that the variable exiting 
this block is  times the variable entering it. But dividing by s in Laplace symbolism 
signifies integration: . The block of the type  is accordingly called an 
integrator.

5. The vertical arrow on top of the integrator specifies the initial value of the output variable 
from the integrator. This arrow is often rescinded for convenience, or if the 
corresponding initial value is zero.

Note that we have avoided signifying whether  in the block diagram depend on 

the Laplace variable s, or time t. The reason for this is that the block diagram may represent 
both the Laplace-transformed case and the time domain case. We just have to keep in mind 
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that the integrator in the Laplace-transformed interpretation of the block diagram means 

multiplying with , as opposed to when we want the diagram to represent relations 

between time-varying variables.Then the block  is an integration operator - it 

stenographically signifies the relationship . For more on operator 

interpretation of s, see for instance Rowell (1997, 207 - 211).

The block diagram in figure 5 corresponds exactly to the model given by equations (3) and 
(5). By inspecting the figure, we see how the spending flow  is caused by “pressure” 
from money stock , while  at the same time feeds back negatively and depletes the 
same money stock.

The block diagram in figure (5) is called an elementary block diagram, because it contains 
only “simple elements” like integrators (one in this case) and constants (  in this case). 
Such a block diagram may be changed (reduced) into an equivalent (in an input/output 
sense) diagram, where a simpler structure is achieved at the cost of more complex 
expressions in the blocks that remain after the procedure. For our example, the reduced 
block diagram turns out to be as shown in figure 6. This diagram, reduced to only one 
block, simply results in the transfer function , see (13).

Figure 6 

Manipulating block diagrams into different but equivalent diagrams will be done later in 
examples.

2.2 An aggregate unit

We now will consider a generic aggregate unit (a sector), which consists of a large number 
of individual units. Such an aggregate unit may for instance represent all households, or 
consumption goods firms, or all firms, or all banks, etc. 

Let us confine the discussion to units within a given sector. Individual units there will of 
course have different “sizes” in the sense that money stock and flow magnitudes will vary 
widely. But we assume that (5) holds for all units in a given aggregate, i.e. that the money 
stock of a specific unit is proportional to the spending flow from the unit, by a common 
factor . Thus all units in a given sector may be represented by the transfer function (13).

We furthermore assume that any (in an average sense) individual unit’s outgoing money 
flow is divided into fractions   (out of the sector) and  (to other units within the 
sector), where . This is illustrated in figure 7: 
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--------------
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Figure 7 

Note that this is a “physical” flow chart, not to be confused with the mathematical block 
diagram introduced earlier. The shaded arrows indicate a network of interactions, where 
any individual unit in principle interacts with any other unit. Our interest is still focused on 
two aspects, input-output characteristics of the aggregate unit, and the dynamics of 
aggregate money stock. The surprisingly simple result is that - under the above 
assumptions - the transfer function for the aggregate unit turns out to be

, where (16)

Before proceeding with the proof, some comments to indicate that this result is intuitively 
satisfying. Let us first consider a type of sector where the population of units have a low 
volume of monetary transactions between them, even if the number of units may be large: 
A case in point is the aggregate of all households. In this case  is close to unity. Referring 
to figure 7, this means that the units are simply laid out “in parallell”, with negligible flows 
between them. Money arriving at a specific unit will emerge from the the unit and also the 
aggregate, without having to “percolate” via other household units first. Thus one should 
expect the aggregate to have the same fast response as an individual unit. This also fits with 
(16), since Ta =  in the limit when  = 1.

For the firm sector, we will have , since each firm will direct a significant part of its 
money outflow to other firms, not out of the sector.

The extreme case  is when the “aggregate unit” is such that units mostly do their 
transactions with other units within the aggregate. This case fits well with what financial 
sectors have developed into for the last decades. An outside unit who injected money into 
such an aggregate, would – if she had the means to “trace” that packet of money – observe 
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that it would take a very long time before the last residue of the injected amount emerged 
from the aggregate. It is consistent with (16), where a small  means a large lag Ta , giving 
just the type of low-amplitude, drawn-out response that seems reasonable.

We will now prove (16).

Proof: In deriving the transfer function for the aggregate unit, we may assume that the 
outside incoming monetary flow arrives at one unit only, because of the symmetry between 
the units, and because of the superposition principle that applies to a linear system: If the 
incoming flow was instead distributed between several units, the resulting response would 
be the sum of responses to each component of the incoming flow, transmitted through 
identical transfer functions, which would then sum up to the result we get when the 
incoming flow is considered to arrive at a single unit only.

Consider the structure in figure 8. It is a block diagram with transfer functions. This block 
diagram accounts for the way an incoming monetary flow branches through the aggregate 
of units. As already argued we may assume that the flow enters at one single unit, the 
uppermost in figure 8. This results in a spending flow which, according to figure 7, is 
partioned into a share  leaving the aggregate, and a share  to another unit within the 
aggregate. This share again results in a flow that is partioned into a share  leaving the 
aggregate, and a share  to another unit within the aggregate, and so on. The transfer 
function

(17)

is indicated in the figure by the light shaded area. 

Figure 8 

If we now extract the upper single unit from the aggregate, and assume that the remaining 
number of units is so large that this does not significantly affect the transfer function of the 
aggregate, then  will also be found as indicated by the dark shaded area,
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(18)

Employing rules for manipulating block diagrams where blocks are in parallell and in 
series, we get

(19)

Solving for ha (s) , we get (16). This completes the proof.

A more comprehensive treatment of this theorem and its ramifications, is given in 
(Andresen, 1998).

Note that this aggregation theorem makes a stronger case for the choice of a first order 
time lag (“vessel”) model of a macroeconomy. Phillips (1954, pp. 291 - 292) chooses this 
model because it is the simplest one among many that has the property of a gradual 
response to a sudden change in the input. A similar model and reasoning is found in Godley 
and Cripps (1983). 

Phillips (1957) discusses whether his first order time lag model from 1954 is too simple. 
But the above theorem strengthens the case for the 1954 model, since it is derived from the 
fact that an economic aggegate is a network of interacting units. Monte Carlo simulations 
of networks with up to 150 interacting units with randomly selected individual time lags 
(around a mean), and with randomly selected coefficients for flows between them, is done 
in Andresen (1998). These confirm that the time lag representation is a a fair approximation 
for the aggregate, even when the variance around the mean for generated parameters is 
chosen quite large, for instance unit time lags that may vary by a factor of ten.

ha s  F̃o s  F̃i s =

ha s  
1 s+
-------------- 1

1 s+
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3. A “textbook economy” with firms and households 

We will consider an economy with households, firms, no government and no financial 
sector. Consider the diagram in figure 9: This a “physical flow chart” representation of this 
economy. Further below we will introduce the mathematical block diagram of the same 
system. As is clear from figure 9, we assume that there are no external sinks or sources of 
money. This assumption will be rescinded later on, among other things to discuss the 
multiplier. 

Figure 9 

In the figure we have these flows:

= aggregate demand [currency unit / time unit] 

= aggregate output [c.u./ t.u.] 

= profit =  [c.u./ t.u.], i.e. all profits are invested, and there is no external 
source of investment at this stage.

= wages =  [c.u./ t.u.], i.e. all wages are consumed, and there is no household 
savings sink (or borrowing source) at this stage.

Furthermore,  and  are wages and profit share of output, respectively. They 
are considered constant in this model. We also have money stock in the two sectors  
and . 

The mathematical block diagram of this system is shown in figure 10:

Figure 10 
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If we reduce the two inner loop subdiagrams, we get figure 11:

Figure 11 

There is one important loop lacking in this block diagram, the profit = investment loop 
depicted in figure 9.We should, however, note that figure 11 is entirely correct in the sense 
that in a system defined as consisting of firms and households, the input to the firm sector 
is consumption only, and the output is wages only. Investment is a flow that is internal to 
the aggregate of firms as a whole. So how do we introduce profits, investment (and 
aggregate demand/output) into the block diagram representation? We do this by demanding 
that the two firm sector block diagrams shown in figure 12 are equivalent in an input-output 
sense:

Figure 12 

This gives an equation to find the unknown transfer function :

(20)

Solving for  gives

(21)

We observe that “extracting” the profit/investment loop leads to a reduced time lag for the 
modified firm sector. Figure 11 may now be transformed into the equivalent block diagram 
shown in figure 13:

Figure 13 
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We may also expand figure 13 into an elementary block diagram corresponding to figure 
10. The result is given in figure 14. (Note that we have here also substituted .)

Figure 14 

We have two integrators in this system. In other words, we have a system with two states; 
household and firm money stock. This system is autonomous (i.e. no exogenous inputs), 
and its time path is therefore decided solely by the initial distribution of the money stock 
between the two sectors. We will now use this example to illustrate the use of a modern 
simulation package, Simulink – and to find the equilibrium state of this system. The 
response of the system is shown in figure 15. Initial values are assumed to be  
and . System parameters are time lags  and  (weeks), and 
wages share of output is . 

A Simulink block diagram corresponding to the one in figure 14 is shown in figure 15. This 
setup gives the responses shown in figure 16. (Note that syntax is somewhat different: 
Summation points are symbolized with rectangles with plus and minus signs, as opposed 
to circles used in the diagrams elsewhere in this paper.) We note how supply adjusts to 
demand in equilibrium. The plots also indicate that in equilibrium, money stocks are 
proportional to the respective time lags in the two sectors. This is easily seen by considering 
figure 10: in equilibrium we must have . Since  and , 
this relationship follows. 

The point of this paper, however, is to focus not on equilibrium, but dynamics. In this 
simple case we can find the algebraic solution for the system time path, which is

, where (22)

Note that total money stock, M, is invariant, since there are no sources or sinks of money 
in this model.

The system is linear and therefore amenable to algebraic solution. In a more realistic model 
with non-linearities, algebraic solutions are very difficult to find, if they exist at all. In such 
cases, numerical simulation packages like Simulink are very useful.
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Figure 15 

Figure 16 

We will now introduce exogenous inputs to discuss the phenomenon of the multiplier. We 
assume the usual textbook model where all profits are paid to households together with 
wages, and where households consume a share c of their income and save the rest. See 
figure 17.
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Figure 17 

We have two (exogenous) input money flows,  and . The block diagram for the 
system corresponding to figure 17 is shown in figure 18.  

Figure 18 

We see that a change in exogenous investment or consumption has the same effect. The 
transfer function from investment (or exogenous consumption) to output is, reducing the 
block diagram, 

(23)

If we assume that investment changes as a step function with amplitude at time , 
the Laplace transform of this step function is . We then have for the change in output,

(24)

The final value theorem for Laplace transforms says that, for a time-dependent function 
 tending to a constant value as , we have

 (25)

Applying this to (24), we get
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 (26)

which is the familiar expression for the multiplier. If all income is consumed ( ), the 
multiplier is infinite. The system is on the border of stability: One of two eigenvalues for 
the system (equivalently: poles in the transfer function) is in origo. Outside sustained 
injection of money wil increase circulation persistently between the two sectors, since no 
money is taken out of circulation by households saving part of income – output increase 
will never stop. 

The final value theorem is a fast and convenient tool to find equilibrium outcomes (if any) 
for linear systems, but tells nothing about the transient (i.e. before equilibrium is reached) 
behavior of the system. We do not bring the algebraic solution here, but instead show the 
time path from a Simulink run, in figure 19. The system is initially in equilibrium when 
investment money flow is increased as a step function by  at . The 
propensity to consume is assumed to be , i.e. we have a multiplier of 4. 

Figure 19 

We observe that a 5 units increase in investment flow results in output asymptotically 
increasing by 20 units. Note the fairly long time lag of adjustment, which is  weeks.
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4. The money stock inconsistency of the IS/LM model
Up to this point, our purpose has been to show how system-theoretic, block diagram-type 
tools are useful for macroeconomics, and to justify the first order time lag  (“vessel”) model 
as a main component in such models. We will now use this and the obvious dynamic 
extension of the static IS/LM model to demonstrate that IS/LM as such is fundamentally 
flawed. We are aware of the existence of other severe critiques of  IS/LM. But the point 
here is that the brief analysis given below is sufficient in itself to completely invalidate it. 
It is not based on  arguments and considerations that may be more or less convincing 
depending on which economics camp one identifies with – but simply on a gross 
mathematical inconsistency, which if true cannot be contested.

We start with the static IS/LM equilibrium equations, where aggregate demand must equal 
output, ; and demand for money L must equal money stock M.

(27)

(28)

We use a simple IS/LM variant, with exogenous net government spending , and with 
investment being independent of output. This simplified choice makes no difference for the 
arguments to be made. The model corresponds to the one given in Ferguson and Lim (1998, 
pp 2 - 3). The relations for consumption, investment and liquidity demand are assumed 
linear in output and/or interest. Then we have

(29)

(30)

Here c, b, k, h are constant parameters. We remind ourselves at this stage that this 
“comparative statics” model has as its premise that is a simplified representation; it is 
assumed to be the  equilibrium solution to what in reality is a continuously varying dynamic 
system. Ferguson and Lim give the following dynamic extension of this model:

(31)

(32)

 are constant parameters. Verbally, these two differential equations say that the rate of 
change of output is proportional to the difference between aggregate demand and output, 
and that the rate of change of the interest rate is proportional to the difference between 
demand for liquidity and money stock1. 

The denominaton for the stock M is still [currency unit], while  now get 
the denomination [currency unit / time unit] and become true flows – in contrast to their 
denomination in the comparative statics model, which is [currency unit].

1. One could reasonably argue that the transaction demand for money in (32) should instead be ,
but the choice is to follow Ferguson and Lim. And this choice does not have any impact on the
argument to be made.
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We represent equation (31) by a block diagram, figure 20 1.

Figure 20 

For the block diagram corresponding to the money market equation (32), see figure 21:

Figure 21 

Before combining these two diagrams to one representing the whole system, we wish to 
reformulate equation (31). It may be written as

, which must be (33)

since  is the net nominal money flow into the firm sector. By this we have 
incorporated firm money stock  in the model. Equation (33) explains the slightly 
reformulated but equivalent “firm” substructure in figure 22 below, which – except for this 
modification – is a result of a straightforward connection of the two sub-diagrams for the 
real economy and the money market.

(The modification (33) may alternatively be explained by exploiting a rule for block 
diagram manipulation: Interchanging the sequence of blocks on a path (in this case the two 
blocks containing  and ) does not change the transfer function along that path.)

1. Note that this dynamic model implies that the household sector has instantaneous dynamics,
signified by the block with unity gain. Comparing with figure 18, this corresponds to the time lag
in the household sector tending to zero, . This assumption may be acceptable, since the
time lag of the firm sector is so much larger due to a high share of between-firm transactions, as
discussed in subsection 2.2. One should, however, be aware that this assumption implies that
money stock in the household sector is zero: there is no buffer there, only a through flow.
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By this modification we have accounted for the dynamics of the firm sector money stock 
, which in fact must be identical to the entire money stock of the economy, since 

households are implicitly assumed to have no money stock, and the financial sector only 
appears indirectly via exogenous flows in this model.1

Figure 22 

By now the inconsistency of the IS/LM model may be clearly observed: While money 
stock in reality is endogenous ( ) and a system state, it is at the same time assumed to 
be an exogenous (input) variable . What makes this inconsistency go unnoticed, is that 
the actual presence of money stock ( ) within the the  to  dynamics, disappears in 
the (comparative) statics framework.

The correct model, in its most simplified version, should then be as shown in figure 23:

Figure 23 

1. Note how the loose ends in the model due to a lack of a financial sector stands out in the block
diagram formulation. The savings flow proportional to  in the upper left just drains out of the
system, and the flows  enter the system from “somewhere”, together with money stock
M. But this is another critique, which we don’t need to pursue here.
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The model reduces to one dimension only. And r becomes a controlled input variable, not 
a system state, while M is no longer a controlled input variable but a system state. 

5. Conclusion
If we dynamise the static IS/LM model on the terms of its adherents (neoclassical 
synthesicists), it rigorously follows that their view of money stock being an exogenous 
variable together with government spending ( ), has to be substituted by the interest rate 
and government spending as control variables. They should then logically transit to the 
(Post) Keynesian position on the role of the interest rate. And all economics schools should 
simply abandon the IS/LM model.

G0
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