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An introduction on A.W. Phillips’ “hydraulic” macroeconomic models is given. His (and

others economists’) notion that a macroeconomy may reasonably be considered to have

dynamics corresponding to a first order time lag transfer function, is justified  in this paper by

aggregation of individual micro agents. In connection with  this economic application, we

derive and discuss a theorem and some rules for general networks of time lagged blocks.

Finally, Monte Carlo simulations of networks of micro agents are undertaken, supporting the

validity of the first order time lag aggregate model.
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1. Introduction

A macroeconomy evolves through time, and may be viewed as a collection of sub-entities 
interacting with each other. It is thus a dynamic system. Dynamics are mathematically and 
conceptually much more complicated than (comparative) statics. When doing dynamics, 
algebraic equations (corresponding to the intersecting schedules widely used in economics) 
are substituted with differential or (in the discrete time case, difference) equations. These 
equations are difficult to work with in the sense that one can hardly—as one can in a static 
framework—find graphic or algebraic (when possible) solutions to them without 
computer-implemented solution software. Furthermore, it is very difficult to gain any 
qualitative insights about the behaviour of a dynamic system by inspecting its differential 
equations. The method of representing the system graphically through block diagrams 
lends itself much easier to such insights. This way of representing a system may be 
considered an interface between the user and the differential equation based model. 

In two seminal papers (Phillips 1954, 1957), A.W. Phillips (who today is known in 
economics almost exclusively for the Phillips curve) did the above1. He modeled the 
macroeconomy as a  dynamic system consisting of interconnected sub-entities. In the first 
paper he found the algebraic solutions to the models, while in connection with the latter 
paper he had access to an analog computer for numerical simulation. At the time, this was 
pioneering work. It was a second stage after his initial and simpler physical hydraulic 
simulation model with vessels interconnected by tubes. Phillips had the advantage of a 
background as an electrical engineer, and acquainted himself with the fairly new discipline 
of control engineering and theory that had evolved strongly doing the second world war. 
He saw that it could be applied to economics.

After an initially enthusiastic reception, however, this research was subsequently 
disparaged by many in the economics profession as “hydraulic Keynesianism". This was 
possible not the least since at that time very few economists had access to, or were 
acquainted with, the methods and the few and expensive tools available for simulating 
dynamic models.

Figure 1 shows a facsimile from Phillips’ 1954 paper, the simplest model with fixed prices. 
The thick dotted line is added here. Above this line is the control system. It compares actual 
output  to desired output , and the error  is fed into a PID controller. Note that these 
variables are money flows [currency unit / time unit] since the model is in continuous time, 
as opposed to what is usual in dynamic economics, where the time axis is partitioned into 
periods, and variables therefore are money amounts.  The PID controller decides the 
intervention strategy of the government. The control action is government spending, 
indicated by the symbol  (I have put a circle around the symbol to indicate that it is 
inserted here and not part of Phillips’ original figure). It is not the purpose of this paper to 
discuss the control strategy suggested by Phillips, but only his model of the demand-to-
output relationship, equation (1) below. The dotted rectangle (inserted by me) indicates this 
part of his model, a “vessel” fed by the incoming aggregate demand flow E. The block is 
called  in Phillips’ notation, and is a first order time lag,

1. I am indebted to Professor P.N. (Raja) Junankar, who pointed out these articles to me, after 
observing similarities with my own work.
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Figure 1: Facsimile of original Phillips block diagram

(1)

The rationale for the model (1) has traditionally been explained like this: The economy 
needs time to adjust to a change in demand. The first order time lag is the simplest model 
for such dynamics. Thus Phillips and others (for instance Godley and Cripps, 1983) use an 
“Occam’s razor” type of justification for their choice of model.. 

The time lag model corresponds well (at least as a linearized approximation) to a vessel: 
A sudden increase in the incoming flow will initially increase the level of fluid (in our case: 
money), which leads to increased outflow in the next round. This is portrayed in figure 2:

Figure 2: First-order time-lagged response

The economy is assumed to react to a jump of one unit in the demand flow with a time-
dispersed exponential output response asymptotically approaching the incoming flow 
level.When the output flow P (theoretically) has reached that asymptotic level, we have 
equilibrium.  is the time lag describing the speed of adjustment..
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This paper will strengthen the validity of the time lag model by deriving it from the fact 
that the economy is an aggregate of a large number of individual agents (firms, households 
or both together). Our approach may introductorily be explained as follows: Assume a 
jump in demand. The increased flow of money percolates through the interconnected 
network of tens of thousands of firms that constitute the demand-to-output part of the 
economy, and gradually (but not immediately) the effect will show up as increased income 
for the factors of production (i.e. output). The lag for the aggregate is a consequence of two 
different factors: The time lag of each firm on the micro level, and the degree to which the 
average unit of money flows to many other firms before it leaves the aggregate as income 
to the factors of production. 

Money stock M must be the integrated difference between demand- and output flows. We 
have the stock/flow balance equation

(2)

At the same time we want a step response as in figure 2, corresponding to the transfer 
function (1). If we choose 

, (3)

this is satisfied. Equation (3) is intuitively appealing in the sense that the outgoing flow is 
proportional to money stock, which can be regarded (by the physical “vessel” analogy) as 
a  “pressure” driving this flow. And the larger the time lag , the less flow P for a given 
M, i.e. a large time lag means that money has to accumulate significantly before it leads to 
increased spending.

In Phillips’ model in figure 1, we note that time lags also show up in two other places in 
his diagram, labeled  and : The first is a lag in the government’s (control action) 
spending, which may be interpreted as either sluggishness in ascertaining the current 
economic situation, sluggishness in implementing the intervention policy, or a combination 
of both. The second lag accounts for a sluggishness in the investment spending reaction of 
investors to the rate of change in output (D is a differentiation operator in the block 
diagram), through an “accelerator” coefficient.

So far on the Phillips model. The interested reader is referred to the original papers.
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2. From micro to macro agents

We now choose the first-order time lag model as a candidate description of the behaviour 
of an individual “micro” agent; a household, a firm, a bank, a government. This generic 
economic agent concept is indicated in figure 3:

Figure 3: A generic microeconomic agent

The agent is again compared to a vessel with varying volume of fluid. Income money flow 
Fi  and spending flow Fo  are shown as black arrows. Real flows (labour, goods, services) 
are suggested by the thick shaded arrows in the figure. The grey shaded area surrounding 
the agent is simply the set of all other agents, i.e. the macroeconomic system.

Money stock M for the agent is the volume in the vessel at a given instant. M may be 
interpreted as the agent’s necessary liquid buffer to handle discrepancies between in- and 
outgoing money flows. This buffer is needed since both income and spending—seen from 
the individual agent—will fluctuate in a more or less unpredictable manner. This 
uncertainty is the only rationale for an agent to hold money, as opposed to non-liquid 
return-yielding financial assets.   

Money stock may also be interpreted as due to a neccessary “decision + action time delay” 
 for the agent before received money is passed on again. We may think of this time delay 

in terms of a specific “packet” of money arriving at the inlet, appearing at the outlet  time 
units later. For the special case with  constant, M will also be constant. We 
have

, or (4)

From (4) follows that a local velocity of money is:

(5)

The delay associated with flows in general (as in process plants, pipelines, etc.), will in the 
case of money be the time a given amount spends between arrival and departure at a given 
agent. Flows between agents may be reckoned as immediate. Thus money always resides 
at some agent. 

The agent is, just as in the aggregate case, assumed to react to a monetary step function 
income flow with a time-dispersed exponential spending response asymptotically 
approaching the incoming flow level, as already depicted in figure 2.  
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As in the aggregate case, we have

(6)

The larger the time lag , the less flow Fo for a given M, i.e. a large time lag (lower money 
velocity ) means that money has to accumulate significantly at the agent before the 
agent increases spending. The parameter  is our first behavioural assumption for our 
generic agent. One may let  ble influenced by other system variables, for instance let it 
increase sharply due to mood changes in a recession/depression (  is a measure of liquidity 
preference, see corollary 1.4 further below) or decrease with increasing interest rates. Such 
modifications will make a model consisting of several such agents, nonlinear. But for the 
time being we will stick to the assumption of a constant and identical  for all agents. 

We have considered the dynamics of an agent with initial zero money stock and a constant 
inflow of money starting at  t = 0. If we alternatively consider a situation with a certain 
initial money stock  but no income, i.e. Fi (t) = 0, then our agent, following (1) and (6), 
spends her money following a decaying exponential  curve, which seems quite reasonable 
in a situation with zero income. See figure 4:

Figure 4: Time path for a micro agent with money but no income

2.1 An aggregation theorem

Let us now return to the aggregate, and let it consist of a large number of individual agents 
as described above. An aggregate “agent” (a sector) may for instance represent all firms, as 
in Phillips’ macroeconomic model. The individual agents that constitute a given sector will 
of course have different “sizes” in the sense that money stock  and flow magnitudes will 
vary widely between them. But we assume that (6) holds for all agents in a given aggregate, 
i.e. that the spending flow from an agent  is proportional to the agent’s money stock, by a 
common constant velocity factor   (this assumption will be relaxed later on). Thus all 
agents in a given sector is represented by a transfer function of the type1

(7)

1. Here s is a differentiation operator, so that  shall be 

interpreted as , i.e. a linear differential equation with input x and output y.
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We furthermore assume that any (in an average sense) individual agent’s outgoing money 
flow is divided into a share   (out of the sector) and  (to other agents within the 
sector), where . We call  an outside spending coefficient. See figure 5.  The 
shaded arrows indicate a network of interactions, where any individual agent in principle 
interacts with any other agent. Our interest is focused on two aspects, input-output 
characteristics of the aggregate, and the dynamics of aggregate money stock.

Figure 5: A flow network of “vessel” agents 

Under the above assumptions the transfer function for the sector turns out to be surprisingly 
simple. It is given by the following “network aggregation theorem”:

Theorem 1: Given a network of an infinite number of identical blocks which are first order 
transfer functions of the type (7), and which are interconnected by arbitrary coefficients, 
such that all transfer functions have identical outside spending coefficients , and such 
that  the remaining output coefficients for each transfer function sum to . Then the 
transfer function for the network, between any block input and any block output, is

, where (8)

Before proceeding with the proof, some comments to indicate that this result  is intuitively 
satisfying. Let us first consider a type of sector where the population of agents  have a low 
volume of monetary transactions between them, even if the number of agents may be large: 
A case in point  is the aggregate of all households. In this case ρ is close to unity. Referring 
to figure 5, this means that the agents are simply laid out “in parallell”, with negligible 
flows between them. Money arriving at a specific agent will emerge from the the agent and 
also the household sector, without having to “percolate” via other  household agents first. 
People use most of their income for purchasing goods and services from firms, not paying 
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it to other households. Thus one should expect the aggregate  of households to have the 
same fast response as an individual agent. This also fits with (8), since Ta = τ in the limit 
when ρ = 1.

The other extreme is when the “aggregate agent” is such that agents mostly do their 
transactions with other agents within the aggregate. This case fits well with what financial 
sectors have developed into for the last decade. An outside agent who injected money into 
such an aggregate, would—if she had the means to trace that packet of money—observe 
that it would take a very long time before the last residue of the injected amount emerged 
from the aggregate. This case corresponds to ρ being close to zero. It is consistent with (8), 
where a small ρ means a large lag Ta , giving just the type of low-amplitude, drawn-out 
response that seems reasonable.

We will now prove Theorem 1.

Proof:  In deriving the transfer function for the aggregate agent, we may assume that the 
outside incoming monetary flow arrives at one agent only, because of the symmetry 
between the agents, and because of the superposition principle that applies to a linear 
system: If the incoming flow was instead distributed between several agents, the resulting 
response would be the sum of responses to each component of the incoming flow, 
transmitted through identical transfer functions, which would then sum up to the same 
result we get when the incoming flow is assumed to arrive at a single agent only.

Consider the structure in figure 6. 

Figure 6: An input-output equivalent network that is without feedback loops

This block diagram accounts for the way an incoming monetary flow branches through the 
aggregate of agents. As already argued we may assume that the flow enters at one single 
agent, in figure 6 chosen as the uppermost. This results in a spending flow which is 
partioned into a share  leaving the aggregate, and a share  to another identical agent 
within the aggregate. The latter flow again results in a flow that is partioned into a share  
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leaving the aggregate, and a share  to another agent within the aggregate, and so on.

Note that feedback loops are indirectly accounted for by the structure in figure 6, since the 
effect of any feedback loop may be equivalently represented by an infinite succession of 
series and parallell connections through identical transfer functions.The transfer function 
for the aggregate,

(9)

is indicated in figure 6 by the light shaded area. 

If we now remove the upper single agent from the aggregate, and assume that the remaining 
number of agents is so large that this does not significantly affect the dynamics of the 
aggregate, then  may also be found as indicated by the dark shaded area,

(10)

Employing rules for manipulating block diagrams where blocks are in parallell and in 
series, we get

(11)

Solving for ha (s) , we get (8). ■

(The proof could alternatively be undertaken by summing up an infinite series of transfer 
functions).

From theorem 1 follows a “look-inside corollary”:

Corollary 1.1: Given a network as defined in theorem 1, and an output flow from the net-
work, . Then the sum of internal flows (with)in the network is 

(12)

If we now allow the time lag for the network to vary, we have an “instantaneous time lag 
(money velocity) corollary”:

Corollary 1.2: Given exogenously determined input and output flows  and . 
 is then also exogenously determined. The instantaneous time lag 

of the network is

(13)

The instantaneous money velocity is (14)

From (13) and (12), and assumptions given below, we have a “flow depletion corollary”:
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Corollary 1.3: Given exogenously determined input and output flows . Then 
. Assume non-decreasing output flows, i.e.  and some lower bound  on 

the agent time lag. Then the flows within the network will decrease relative to , 

(15)

Depletion of internal flows within a sector, as a consequence of the sector being forced to 
yield an exogenously decided output flow, is what happens in an economy with increasing 
debt burdens. A model of this is derived and discussed in (Andresen, 1999).

From , and (12) and (13), we have a “liquidity preference corollary”:

Corollary 1.4: Assume that liquidity preference is on the increase, which in our model is 
expressed by an increasing . It means that, all other things being equal , both aggregate 
output flow  and the aggregate of internal flows, , will decrease, with  

,  and (16)

Such a mechanism is at work during serious economic crises, and contributes to a possible 
deflationary collapse followed by a depression (ibid.).

2.2 An algebra of time lags in a network

The reader may at this stage protest that the assumptions made until now are quite 
restrictive: All agents have the same first order dynamics with constant and identical time 
lags, all agents have the same proportion  of spending outside its sector. We will from 
now on rescind the assumptions about first order dynamics, identical time constants and 
identical inside/outside spending proportions. The price we have to pay is that we cannot 
say anything definite about the specific response of the aggregate, only about its time lag. 
We can (obviously) still say that the response must be positive for all t, regardless of 
differing and time-varying dynamics for all the agents in the aggregate.

We will from now on examine agent dynamics through their impulse responses. In our 
continuous-time economic application, an impulse or delta function  corresponds to 
the agent receiving one unit of money at . For the first order impulse response where 
the transfer function is given by (1), the time lag τ is also the position along the time axis 
of the centroid of the area under the impulse response. For an arbitrary higher order impulse 
response, we now define the time lag τ in the same way. If the area under the impulse 
response is not unity, we divide by the area, 

 , or  if the area is unity (17)

If nothing else is said, we assume unit area from now on. This holds for all our economic 
agents, since money is not created or destroyed by any such agent. We call such an impulse 
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response PUA (positive, unit area). In the s domain (Laplace transformed), a unit area 
impulse response corresponds to unity static gain of the transfer function, we have

(18)

Consider a PUA transfer function 

(19)

The time lag τ may be found through the relation

(20)

We write  for convenience. (20) applied to (19), gives

(21)

For the special case of the first order transfer function, this confirms that τ is identical to  
the time constant, as already stated. For higher-order transfer functions we note that τ is 
independent of the coefficients bi and ai , i > 1.

For N PUA transfer functions of the type (19) in a series connection, the resulting transfer 
function will also be PUA. (20) gives

(22)

This is reasonable, considering that τ  may be seen as the lag of a flow which is transmitted 
through a chain of N  “agents” (referring to our economic application). The impulse 
response of a series connection of sub-systems as in (22), corresponds to convolution of 
PUA impulse responses in the time domain. A PUA response is mathematically similar to 
a probability distribution function, which also is PUA. From probability theory we know 
that if we convolve N p.d.f.s, the result is the p.d.f. for the sum of the respective random 
variables (assuming they are independent)(see for instance Casella and Berger, 1990, p. 
210). And the Central Limit Theorem (ibid., pp. 216-218) tells us that the resulting p.d.f. 
will tend to a normal distribution when N is large. If we return to the time domain and apply 
this to a system consisting of a large number of N serially connected PUA subsystems, this 
means that the impulse response of the system will have a shape approaching that of the 
normal distribution, with time lag corresponding to its mean value. To explore this, 
consider a transfer function

(23)
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It corresponds to a chain of N serially connected identical first order time lags. Since each 
lag in the chain is , rule (22) tells us that the aggregate lag will be invariant = .

Incidentally, we note that 

(24)

so that the impulse response in the limit is trivially an impulse delayed by . We want, 
however, to examine the responses for large but finite N. The impulse response 
corresponding to (23) is

(25)

Figure 7 shows a selection of responses, with  and . (The 
corresponding normal distribution shape is indicated with a dotted line.)

Figure 7: The impulse response of a chain of N transfer functions (23)

Note that these responses are all from transfer functions with no zeroes. We will introduce 
a zero and use  for Monte Carlo simulations of an economic network further below. 
It will be demonstrated that a zero and two poles are sufficient to generate a wide range of 
realistic responses.
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Now to the case of PUA transfer functions connected in parallell:

(26)

Here we require   so that the unit area condition is not violated. The 
time lag is then a weighted average,

(27)

The series (22) and parallel (27) rules for calculating time lags might be employed to check 
the time lag of a network of more arbitrary transfer functions. Assume that transfer 
functions of the type (19) differ from agent to agent, but with similar coefficients 

and a common outside spending coefficient . Consider figure 6, but now with 
these more arbitrary transfer functions in the blocks. We apply rules (22) and (27), and get 
an equation for the time lag for the aggregate by employing a similar argument as that 
which led to (11):

(28)

This gives ,  as expected. 

Finally, consider a linear monovariable system on state space form with a positive—not 
necessarily unit area—impulse response:

(29)

The transfer function is

(30)

The area under the response is

(31)

We also have

(32)

(31) and (32) in (17) then give the time lag for the system,

(33)
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3. Monte Carlo  simulations 
We propose that a second order transfer function with one zero and real poles is sufficient 
for furnishing the neccessary variability in individual agent dynamics. We now express the 
agent PUA transfer function in the form

(34)

The point of the zero  is to account for some agents spending a certain share of 
incoming money immediately after receipt. For a large , the agent’s spending reaction 
will start with a fairly strong initial pulse followed by a correspondingly small exponential 
tail. Figure 8 shows a collection of spending impulse responses for 10 agents, where all 
have a transfer function of the type (34). They are all PUA, and they have the same time 
lag, here . Each response corresponds to a specific parameter set   
where  are the poles of (34). Each set is generated by uniform probability 
density functions, through the following procedure: First a  is generated in the  range 

 (the factor 0.5 is fairly arbitrary). According to (21) and (22), the sum of the 
denominator time constants must  then be . The next step is generating the pair 

 by a uniform p.d.f., but scaled afterwards such that this condition is satisfied. 

Figure 8: Ten impulse responses of (34), with a common time lag = 1
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The same set of responses is shown in both windows, but with different scaling. In the 
lower left window we note the large initial amplitude of some responses; these are the cases 
with a fairly large . The first-order time lag response is shown with a thick dotted line 
for comparison, and its tangent (and thus ) is also indicated. We observe that the first 
order time lag is not a good approximation to most of the responses that are generated.

Our conjecture, however, is that if we interconnect a large number of agents with such 
differing responses as shown above, we will observe that the first order time lag as an 
approximation improves with the number of agents. To explore this proposition, a state 
space model is defined. It consists of subsystems of the type (34), interconnected such that 
the total system is still PUA. Let 

  (35)

The matrix A is

(36)

With n subsystems we have a system dimension 2n. Each subsystem has transfer function 
(34), and is realized as a controllable canonical form (see for instance Belangér, 1995, pp. 
100-104). The subsystems (agents) are indexed . The definitions for  
correspond to (34). Note that indices in (36) are not matrix element indices in the 
conventional sense, since they pertain to the subsystems. Each coefficient  accounts for 
the flow from subsystem i to subsystem k. For each subsystem i there is an outside spending 
coefficient . Then  must satisfy

  (37)

The column vector b has 2n elements and is . It must satisfy

  (38)

Conditions (37) and (38) are neccessary to achieve unit area impulse response for the total 
system, i.e.  such that no money is created or destroyed within it. 

The row vector  has 2n elements and is

, with all (39)
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… … … … … … …
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∑ 1 ρi–=
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Now to the procedure for assigning values to the above parameters: For each Monte Carlo 
run, a complete new set is generated. All probability distributions employed are uniform. 
The procedure is executed for each subsystem i: First, a lag  is drawn. Based on this, the 
parameters  are generated as already described. Then an outside spending 
coefficient  is drawn. Next, coefficients  are also drawn, but scaled afterwards 
such that condition (37) is satisfied. By this, we also have the next two elements in . 
After repeating this for all subsystems, all elements in b are drawn and then scaled such that 
(38) is satisfied.

One should expect widely differing responses, since all parameters are allowed to vary 
quite independently, and the distributions employed are chosen to have a fairly wide range. 
This makes the test of our conjecture more severe. The ranges chosen are:

, , (40)

The mean time lag is 1.0 and the mean outside spending coefficient is 0.4. Based on this, 
the approximative first order time lag response for the total system is predicted to be

(41)

We start simulations with a system of only 10 agents.

Figure 9: Ten individual responses (LL), and the corresponding aggregate response (UR)

The lower left window in figure 9 shows the responses for each individual agent. We note 
that the responses, as opposed to those in figure 8, are much more dispersed now since also 
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the time lags differ between them (in the range 0.1 to 1.9). The mean first order response 
and its tangent is also indicated. The upper right window shows the impulse response of the 
“sector” consisting of these ten agents, together with the first order time lag response (41). 
We observe that this proposed approximation is not too bad, as predicted.

A population of as little as ten agents in a sector is quite unrealistic. We therefore do the 
same with a 150-agent system, which means a 300 x 300 system matrix. This is a fairly 
heavy computing task, so experiments are not carried out for higher numbers of agents. In 
figure 10 are given 10 responses for a 150-agent system, in the lower left window. For 
comparison, 10 responses for a 10-agent system are also given, in the upper right window.

Figure 10: Aggregate responses for a 150-agent system (LL), and a 10-agent system (UR)

We observe that the first order approximation is better for the sector with the higher agent 
population. But the approximation cannot fully represent the strong spread in individual 
agent dynamics, with lags from 0.1 to1.9. This explains the steep part of the true system 
response at its start, which is due to outputs from the agents with the fastest dynamics).

Now to the impact of the outside spending factor, until now chosen in the range 
. If instead all  were close to unity, this would mean that agents do not 

interact, but spend most of their money directly out of their own sector, like in the 
household case. In this case the sector response is simply a weighted mean of individual 
responses. On the other hand, if all  are , this means that a unit of money in an 
average sense has to pass many agents before it is spent out of the sector.  
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We have simulated such a case, with , i.e. a mean  of 0.1. Figure 11 
shows 10 Monte Carlo responses for a 150 agent system.

Figure 11: Aggregate responses for a 150-agent system with a low 

In this case the time lag is 10 for the aggregated system, in accordance with (8). Compared 
to figure 10, lower left window, we see that 

• the responses are closer to the proposed first-order approximation. 

• the initial spikes which are due to zeroes in transfer functions for individual agents in the 
network, still leave a mark on the aggregate response in the form of a corresponding 
initial peak, but a smaller and narrower one.

We will now try to explain this by exploiting an intermediate result from the proof given 
for Theorem 1. We again make the simplifying assumption that all agent transfer functions 
and all outside spending coefficients  are identical. But now the agent transfer functions 
are of the type (34), which we here write as

(42)

The intermediate result (11) may be generalized to

, (43)

where dependence on s is omitted for brevity. Solving for  and using (42), we get
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(44)

We compare this to the first-order approximation, which, following (8) and (21), is

(45)

Eq. (44) confirms that the zero will make itself felt also for the aggregate system, as already 
observed through the Monte Carlo runs shown in figure 11. But (44) also tells us that its 
relative influence on system dynamics is less when  is small, which is supported by a 
comparison of figures 10 and 11. Furthermore, when  is reduced, the influence on system 
dynamics of the second-order term in the denominator in (44) decreases in relation to the 
first-order term. This also supports the observation that the system response is closer to that 
of the first-order approximation (45), when  is small.

4. Conclusion
The first order time lag approximation for a sector is vindicated. It gets better for large 
number of agents (which is what we have in macroeconomic applications), and still better 
for sectors with strong interaction (for instance firms, as opposed to households). 

The model may be applied to any type of sector, and any (reasonable) size sector, and these 
aggregates may be interconnected.

Since agents’ spending preferences are constant in each simulation, behavioural 
assumptions have been quite restrictive. But the model  can easily incorporate time-varying 
coefficients, or more realistically: coefficients dependent upon system states. In the last 
case the model will become non-linear. This is a topic for further research.
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